

Off-Season Vegetable Farming in Tunnels

R & D and Training Wing Agriculture Finance Group, Head Office, Lahore

Contact: Dr. Nasir Mahmood Nasir

Tel: +92 42 99232105

Table of Contents

Summary	2
1. Introduction	3
2. Project Cost	3
3. Export Prospects	4
4. Production Sequence of Cultivation	4
5. Suitable Vegetables for Cultivation	4
6. Nutrient Requirements	5
7. Sowing and Transplanting Period of Off-season Vegetables	6
8. Irrigation	6
9. Types of Tunnels	7
i) Low Tunnel	7
ii) Walk-in Tunnels	7
iii) High Tunnel	8
a) Support Structure	9
b) Seed Recommendations	9
c) Important Points for Tunnel Farming	9
10. Suitable Site for Tunnel Farming	10
i) Preparation of Soil & Sowing	10
ii) Expected Production	10
11. Equipments and Machinery Requirements	11
12. Human Resource Requirements	11
13. Infrastructure Requirements	11
14. Project Detail	13
15. Projected Income Statement of 54 tunnels on 9 acres project	14
16. Input Assumptions	15
17. Disclaimer	17

Summary

Vegetables are daily food requirements for balanced diet and a good source of vitamins, proteins, essential nutrients and carbohydrates. Due to lack of advanced production technology of vegetables, farmers are limited to grow seasonal vegetables and are dependent on marketing mechanism of demand and supply so could not get good prices to sustain vegetable business.

Due to presence of negligible number of vegetable processors and lack of cold storage infrastructure, farmers could not get the reasonable profit margins by selling their produce at the time when market is flooded with seasonal vegetables.

Summer vegetables are susceptible to insects, pests and diseases that can be grown in winter by marinating the temperature through well established production technology of vegetable tunnel farming. The tunnel construction offers maximum crop yield, better maintenance of the fertility of land, controlled temperature and humidity, protection from wild animals and insects and better water conservation. Mostly tunnels are of three types by their structure i.e. low tunnel, walk-in tunnel and high tunnel.

The off-season vegetable project using high tunnel technology on area of 9 acres needs a capital investment estimated at Rs. 6.6 million for construction, purchasing machinery and equipment. In addition to this, a sum of Rs. 0.3 million is required as working capital, which would be used for purchasing of seeds, fertilizers and pesticides etc. The total project cost is estimated at Rs. 7 million

1. Introduction

To grow vegetables in unfavorable weather conditions is called "growing off-season vegetables". Human nature ever wishes to get those things that are scarce. Off-season vegetables and fruits are sold at high prices in the market. Vegetables are rich source of vitamins, carbohydrates, salts and proteins. High population growth rate has given rise to high demand in basic dietary vegetables. Increased health awareness, high population growth rate, changing dietary patterns of increasingly affluent middle class and availability of packaged vegetables, has therefore generated a year round high demand for vegetables in the country in general and in major city centers in particular. However, our farmers have yet not been able to get benefited from this opportunity and still using traditional methods.

In the absence of storage infrastructure and vegetable processing industry in the country, off-season vegetables farming is the only viable option that can add value to the farmers produce.

2. Project Cost

By using high tunnel technology many off-season vegetables like tomatoes, cucumber, brinjal, hot pepper, sweet peppers and watermelon can be cultivated. This project is focused on the study of three crops only i.e. Tomato, Capsicum and Cucumber, cultivated on area of 9 acres. The land utilized for cultivation is recommended to be leased.

The off-season vegetable project using high tunnel technology on area of 9 acres needs a capital investment estimated at Rs. 6.64 million for construction, purchasing machinery and equipment. In addition to this, a sum of Rs. 0.3 million is required as working capital, which would be used for purchasing of seeds, fertilizers and pesticides etc. The total project cost is estimated at Rs. 6.94 million.

The estimated yield potential of the farm varies according to the selected type of vegetable. For this project, three proposed vegetables are selected which are listed below. For this vegetable crop mix, it is estimated that a 9-acre farm unit will yield a total of 210,000 kg vegetable per annum.

Vegetables	Area (Acres)	Production Quantity in (kg)/ Acre	Total Production Quantity		
Cucumber	3	28,000	84,000		
Capsicum	3	18,000	54,000		
Tomatoes	3	24,000	72,000		

 Table 1: Total Production Capacity

3. Export Prospects

Pakistan is not yet exporting vegetables due to their perishable nature, although there is huge demand in international market. The facility of growing off-season vegetables also allows for growing non-conventional varieties and vegetables, which are in high demand in Europe, Middle East and Far Eastern countries.

4. Production Sequence of Cultivation

Production sequence considering the tomato crop is as follows:

- a. Selection of fertile soil for construction of tunnels.
- b. Production technology should be adopted through trained persons.
- c. Selection of good quality soil and sowing of seeds for nursery.
- d. Preparation of seedbeds in the field for cultivation of vegetables.
- e. Using fertilizer of different varieties for the smooth growth of plantation (Recommended fertilizers for different crops).
- f. Transplantation of nursery in the soil.
- g. Irrigate the soil to maintain the soil moisture. Drip irrigation is more economical.
- h. Use of pesticides/fungicides to protect the plants from insects and diseases.
- i. Harvesting at proper time as per requirement of the plantation.
- j. Grading of crop on the basis of quality standards.
- k. Transportation to the sale points in local or export markets after application of post harvest technology.

5. Suitable Vegetables for Cultivation

Growing of vegetables in tunnels under plastic can give superior yields and early spring production. Following crops are high value vegetables and have shown significant increase in earliness:

- Cucumber
- Capsicum
- Tomato
- Pepper
- Bitter Gourds
- Melons
- Brinjal
- Water melon

Vegetables can be grown in tunnels in all tropical and subtropical regions of the country. This technology can successfully be adopted in coastal districts of Sindh which have favorable conditions for off-season vegetable farming. The tunnel farming in districts Thatta, Badin and Hyderabad can reduce the production costs.

6. Nutrient Requirements

Appropriate quality and quantity of fertilizer plays a great role in the production and quality of vegetables.

Vegetable	Fertilizer Time	Quantity per acre (kg)
Cucumber	At the time of land	Nitrogen = 37 , Phosphorus = 100 ,
(Kheera)	preparation.	Potash = 100
& Ghyia	After one month at the time	Nitrogen = 37
Kadu	of earthing up.	
	At flower stage	Nitrogen = 37
	One month after first picking	Nitrogen = 37
Tomato	At the time of land	Nitrogen = 37 , Phosphorus = 100 ,
	preparation.	Potash = 100
	At the time of earthing up.	Nitrogen = 37
	At the time of first picking.	Nitrogen = 37
	One month after first picking	Nitrogen = 37

Table 2: Fertilizers for High Tunnel

Table 3: Fertilizers for Walk in Tunnel

Vegetable	Fertilizer Time	Quantity per acre kg
Capsicum	At the time of land	Nitrogen = 25 , Phosphorus = 50 ,
(Shimla	preparation.	Potash = 50
Mirch)	At the time of earthing up.	Nitrogen = 25
and Sweet	At the time of first picking	Nitrogen = 37
pepper	One month after first picking	Nitrogen = 37
Bitter	At the time of land	$DAP = \frac{1}{2} bag$, Potash = 1 bag
Gourds	preparation.	
(Karrela)	At the time when plants	Urea = $\frac{1}{2}$ bag
	height is 10 cm.	
	At flower stage	Urea = $\frac{1}{2}$ bag
	One month after first picking	Urea = $\frac{1}{2}$ bag
Chappan	At the time of land	$DAP = \frac{1}{2} bag$, Potash = 1 bag
Kadu	preparation.	
	At the time when plants	Urea = 1 bag
	height is 10 cm.	
Halwa	At the time of land	$DAP = \frac{1}{2} bag$, Potash = 1 bag
Kadu	preparation.	
	At flower stage	Urea = 1 bag
Ghyia	At the time of land	$DAP = \frac{1}{2} bag$, Potash = 1 bag
Kadu	preparation.	
	At flower stage	Urea = 1 bag

Note: The quantity of fertilizers at the time of sowing and after sowing must be used according to per line of vegetables in the tunnel. In spite of macronutrients, micronutrients i.e. Fe, Zn, Mn, B are also required to increase the yields of crops. These micronutrients are available in the market in liquid and solid forms.

7. Sowing and Transplanting Period of Off-season Vegetables

Following are the sowing and transplanting period of selected off-season vegetables with "plant to plant" and "row to row" distance:

Vegetables	Sowing	Transplanting	Direct	Plant to	Row to
	Period	Nursery	Sowing	Plant	Row
	Nursery			Distance	Distance
Tomatoes	1-15 Oct	1-15 Nov	-	30 cm	75 cm
Cucumber	-	-	15-31 Oct	30 cm	100 cm
Capsicum	1-15 Oct	1-15 Nov	After mid	50 cm	150 cm
_			Jan		
Sweet Pepper	1-15 Oct	1-15 Nov	After mid	30 cm	100 cm
			Jan		
Chappan	-	-	After mid	25 cm	200 cm
Kadu			Jan		
Bitter Gourds	-	-	After mid	30 cm	250 cm
			Jan		
Halwa Kadu	-	-	After mid	50 cm	300 cm
			Jan		
Ghyia Toori	-	-	After mid	50 cm	300 cm
			Jan		

 Table 4: Sowing period for the selected off-season vegetables

Table 5:	Requirements	of Temperature	for Best	Growth of	Vegetables
----------	--------------	----------------	----------	-----------	------------

Sr. No	Vegetables	Temperature (degree centigrade)
1	Cucumber	24-18
2	Capsicum	24-21
3	Tomatoes	29-21
4	Sweet Pepper	24-21
5	Bitter Gourds	29-21
6	Ghyia Kadu	24-18
7	Chappan Kadu	24-18
8	Halwa Kadu	24-18
9	Ghyia Toori	24-18

8. Irrigation

In severe summer irrigation to vegetables is required after every 5 - 7 days depending on the type of soil, whereas in December, January light water is required after 15-21 days. The quantity of water can be changed keeping in mind the climatic conditions. In water shortage areas the best way of irrigation is drip irrigation. Drip irrigation improves the water use efficiency if fertilizers are applied though drips as fertigation and offers more splits of fertilizers, even micronutrients can be used, through the initial growth periods. The benefits of fertigation are in terms of increase in yield, quality of fruit and insect pest control. The best water for irrigation is canal water but if tube well is available then before irrigation or star of business, the water analysis must be done avoiding deteriorative effects if unfit for irrigation. It is not recommended to make investments of vegetable tunnel farming in saline soils and unfit water conditions. Drip irrigation is a technical matter which can be applied through trained technicians.

9. Types of Tunnels

Off-season Vegetable farming in tunnels is gaining popularity because of low cost and easy usage. Plastic tunnels are transparent which provides required sunshine to the plants, and the plastic also plays a barrier against the cool air in winter. Tunnels help to gain maximum crop yield, to maintain the fertility of land and control on temperature.

Following are three main types of tunnels:-

i) Low Tunnel

Low tunnels are less expensive as compared with the High tunnels but crop yield is low. Soil preparation, spraying and picking is difficult is this tunnel. Cucumber, melons, watermelons, bitter gourds, squashes, and snake gourds etc can be grown in these tunnels.

ii) Walk-in Tunnels

These are lower in height as compared with High tunnels. Walk-in-tunnels provide high yield compared to Low tunnels. The tunnel is suitable for growing tomatoes, cucumbers, sweet pepper and hot pepper.

iii) High Tunnel

High tunnels give maximum yield of crops and make easy soil preparation, picking, spraying due to its width and height. The tunnel is suitable for growing tomatoes, cucumbers and sweet peppers.

Table	6:	High	Tunnel	Dimensions
-------	----	------	--------	------------

		Mild steel, zinc galvanized	
Material Specification	Pipe material	Diameter 40mm	
		Thickness 1.6 mm	
		Length 20-25 ft	
	Plastic	0.10 mm thick and 20 ft wide	
	Height	Center 10 ft, Sides 6.5 ft	
	Width	30 ft	
Tunnel Specification	Length	190 ft	
	No. of tunnels	6 per acre	

The cost of such tunnel amount to Rs. 95,450 excluding the cost related to plastic used as a shield (Cover) and mulch.

a) Support Structure

This tunnel is built by pipe material of 40-mm diameter 20-25 feet length. The tunnel will be 10 feet high from the centre and 6.5 feet high from the sides. Each tunnel structure will then be covered by 0.1 mm thick and 20 feet wide plastic sheet. Approximately 6 tunnels can be constructed on an acre of land. Each tunnel will be 190 feet long, 10 feet high and 30 feet wide.

b) Seed Recommendations

Hybrid seeds are produced through a special process and give crop yield 3 to 4 times more than ordinary seeds. F1 hybrid seeds are recommended for cultivation in tunnels because they have the ability to resist multiple diseases and have above 90% germination capacity as compared to that of ordinary one.

c) Important Points for Tunnel Farming

- Prior to start off-season vegetable farming in tunnels, the investor must have practical knowledge about farming.
- Soil and water quality should be tested before starting the farming.
- Self-pollinated plant should be grown.
- Recommended seed should be used.
- Farmer must have the updated market information to earn high profit.

10. Suitable Site for Tunnel Farming

The purchased land is recommended for tunnel farming but can also be taken on lease. Rural areas around the major cities of the country are the suitable areas for setting up tunnels.

i) Preparation of Soil & Sowing

- Soil should be properly leveled preferably by laser leveling.
- Preparation of soil with rotaveter/ cultivator.
- Application of well-decomposed Farm Yard Manure at least 10 ton per acre at least 90 days before sowing.
- Prepare beds before sowing.
- Make holes and prepare media mixed with loam soil, FYM and fertilizers to fill the holes at the time of sowing/ seeding.
- Field should not be flooded with water. Irrigation should be applied in such a way that water level be kept below the seeding place; only moisture reach the seed to wet it for germination. In this way the percent germination would be more.
- Keeping in mind the type of soil, light irrigation should be repeated after 2-3 days to assure the proper moistures for germination.

ii) Expected Production

Expected production, sale price and land utilization of some vegetable is as follows: -

Vegetable	Land Utilization (Acres)	Production Quantity (kg)/ Acre	Production Quantity (kg)	Sale Price* Rs./ (kg)
Cucumber	3	28,000	84,000	27
Capsicum	3	18,000	54,000	47
Tomatoes	3	24,000	72,000	47

Lable / Lapevea Liouaction and Lana Combation	Table 7:	Expected	Production	and Land	Utilization
---	----------	----------	-------------------	----------	-------------

*The prices of vegetables depend on demand and supply and environment conditions. Normally the off – season vegetables prices are higher than seasonal vegetables.

11. Equipments and Machinery Requirements

Following equipments and machinery is required for an off-season vegetable farm of 9 Acres:

Description	Number	Cost (Rs)
Rotavator	1	65,000
Ridger	1	18,000
Soil Leveler/ Scraper	1	12,000
Spray Machines & Farm Tools	1	50,000
Peter Engine	1	45,000
Total cost of tools & equipment cost		190,000
Tractor & Cultivator	1	500,000
Total cost of tools, equipment & vehicle		690,000

Table 8: Equipments and Vehicles

12. Human Resource Requirements

Description	Number	Monthly Salary per Person (Rs.)	Annual Salary (Rs)
Farm Manager	1	10,000	120,000
Labor	8	5,500	528,000
Guard	1	6,000	72,000
Total	10		720,000

Table 9: Number of Staff required for 54 tunnels (9 acres)

Apart from the above mentioned staff requirements, part time workers for four months will be required during the picking season. Following table shows the part time staff requirements:

Table 10: Part-time stan requirement for 54 tunnels (9 acres	Table 10	: Part-time	staff reo	uirement	for 54	tunnels (9	acres
--	----------	-------------	-----------	----------	--------	-----------	---	-------

Description	Number	Salary (Month) (Rs)	Total Salary (Rs)
Labor	108	5,500	594,000

13. Infrastructure Requirements

For three off-season vegetable crops nine acre agriculture land is required with availability of electricity, Diesel (for tube well operations) and water.

Description	No. of Units	Price per Unit	Total Cost
Misc Pipe	2,000	40	80,000
Clamps	80	30	2,400
M& F adopters	20	200	4,000
Galvanized Wire Guage	40	75	3,000
Tensioners	30	45	1,350
Nets	12	250	3,000
Fabrication Cost	1	1,700	1,700
Total Cost in Rs. per Tunnel	95,450		
No. of Tunnels per Acre	6		
Total Cost in Rs. per Acre			572,700
Plastic Cost Kg/ Acre)	350	180	63,000
Black Mulch	40	190	7,600
Total Plastic Cost Kg/ Acre)	70,600		
Total Per Acre Cost			643,300

 Table 11: Construction Cost for High Tunnel per Acre (Rs)

14. Project Detail

Capital Investment	Rs.
Building/Infrastructure	5,789,700
Machinery & Equipment	190,000
Furniture & Fixture	60,000
Pre-operational Expenses	100,000
Vehicles	500,000
Total Capital Cost	6,639,700

Working Capital	Rs.
Raw material inventory	250,000
Cash	50,000
Total Working Capital	300,000

	Financing	Rs.
Equity	50%	3,469,850
Debt	50%	3,469,850

15. Projected Income Statement of 54 tunnels on 9 acres project

										Rs.
	Year-1	Year-2	Year-3	Year-4	Year-5	Year-6	Year-7	Year-8	Year-9	Year-10
Revenue from sale of vegetable	6,961,500	7,309,575	7,675,054	8,058,806	8,461,747	8,884,834	9,329,076	9,795,530	10,285,306	10,799,571
Cost of Sales										
Cost of Seeds	76,666	80,499	84,524	88,750	93,188	97,847	102,740	107,877	113,271	118,934
Operations costs (direct labor)	1,242,000	1,304,100	1,369,305	1,437,770	1,509,659	1,585,142	1,664,399	1,747,619	1,835,000	1,926,750
Machine Maintenance	150,000	157,500	165,375	173,644	182,326	191,442	201,014	211,065	221,618	232,699
Fertilizers Cost	288,000	302,400	317,520	333,396	350,066	367,569	385,948	405,245	425,507	446,783
Pesticide Cost	270,000	283,500	297,675	312,559	328,187	344,596	361,826	379,917	398,913	418,859
Direct Water	54,000	59,400	65,340	71,874	79,061	86,968	95,664	105,231	115,754	127,329
Plastic Cost	635,400	667,170	700,529	735,555	772,333	810,949	851,497	894,072	938,775	985,714
Total cost of sales	2,716,066	2,854,569	3,000,268	3,153,548	3,314,819	3,484,513	3,663,087	3,851,025	4,048,838	4,257,067
Gross Profit	4,245,434	4,455,006	4,674,786	4,905,258	5,146,927	5,400,321	5,665,988	5,944,505	6,236,468	6,542,504
Operating Expense										
Payroll (Admin)	72,000	75,600	79,380	83,349	87,516	91,892	96,487	101,311	106,377	111,696
Fixed electricity	60,000	66,000	72,600	79,860	87,846	96,631	106,294	116,923	128,615	141,477
Administrative Overheads	69,615	73,096	76,751	80,588	84,617	88,848	93,291	97,955	102,853	107,996
Amortization (Pre-operational Expense	15,000	15,000	15,000	15,000	15,000		-	-	-	-
Transport Cost	892,500	896,963	901,447	905,955	910,484	915,037	919,612	924,210	928,831	933,475
Packing Cost	357,000	358,785	360,579	362,382	364,194	366,015	367,845	369,684	371,532	373,390
Depreciation	140,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000
Total	1,606,115	1,625,443	1,645,757	1,667,133	1,689,658	1,698,423	1,723,528	1,750,084	1,778,209	1,808,033
Operating Profit	2,639,319	2,829,562	3,029,029	3,238,125	3,457,270	3,701,898	3,942,460	4,194,421	4,458,260	4,734,471
Non-Operating Expense										
Interest expense on long term debt	432,000	405,000	350,000	270,000	150,000					
Land Lease	135,000	135,000	135,000	135,000	135,000	135,000	135,000	135,000	135,000	135,000
Total	567,000	540,000	485,000	405,000	285,000	135,000	135,000	135,000	135,000	135,000
Earnings Before Tax	2,072,319	2,289,562	2,544,029	2,833,125	3,172,270	3,566,898	3,807,460	4,059,421	4,323,260	4,599,471
Commission of Arthi	103,616	114,478	127,201	141,656	158,613	178,345	190,373	202,971	216,163	229,974
NET PROFIT	1,968,703	2,175,084	2,416,828	2,691,469	3,013,656	3,388,553	3,617,087	3,856,450	4,107,097	4,369,497

16. Input Assumptions

Table 12: Seed Assumptions

Crop Assumptions	Cost per Seed in Rs.	Average Seed Requirement in unit/ Acre	Av. Seed Price/ Acre
Cucumber	1.70	13,333	22,666
Capsicum	1.60	15,000	24,000
Tomato	2.00	15,000	30,000
Sale Price Growth Rate			5%

Table 13: Production Assumptions

Crop Assumptions	Crop Yield per Acre in kg	Total Production Quantity (kg)	Sale Price of Crop per Kg
Cucumber	28,000	84,000	27
Capsicum	18,000	54,000	47
Tomato	24,000	72,000	47
Sale Price Growth Rate			5%

Table 14: Expense Assumptions

Crop Wastage	15%
Administrative Overhead (% of Total Revenue)	1.00%
Water cost per Irrigation per Acre (Rs.)	600
Irrigation (No. of Months)	5
No. of times land irrigated (per month)	2
Fixed Electricity per Month (Rs)	5,000
Transport Cost per kg (Rs)	5.00
Packing Cost per kg (Rs)	2.00
Machine Maintenance (machine/month)	5,000
Pesticide Requirement per Acre per Year (Rs)	30,000
Fertilizer Cost per Acre per Year (Rs)	20,000

Table 15: Farmyard Manure Cost

Farmyard Manure	Per Acre Cost
Tomatoes	4,000
Capsicum	4,000
Cucumber	4,000

Table 16: Growth Rate Assumptions

Electricity Growth Rate	10%
Water price growth rate	10%
Wage Growth Rate	5%
Raw Material price growth rate	5%
Machine Maintenance Growth Rate	5%

17. Disclaimer

The content of the information memorandum does not bind NBP in any legal or other form as the purpose of this report is to provide a general idea and information to NBP staff to assist them evaluate the feasibility reports submitted by the clients, and for the farmers and organizations interested to grow off-season vegetables by using tunnel technology. The data and info reported in this document is gathered from various sources and is based on certain assumptions. In spite of taking due diligence in compiling this report, the contained information may vary due to any change in any of the relevant factors e.g. agro-climatic conditions, farm management, diseases, pests, low production, market prices etc. and the actual results may differ substantially from the presented information. NBP does not assume any liability for any financial or other loss resulting from this document in consequence of undertaking this Project.